Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1.
نویسندگان
چکیده
In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures. The development of biofilm architecture, particularly the spatial arrangement of colonies within the matrix and the open areas surrounding the colonies, is thought to be fundamental to the function of these complex communities. Here we report a new role for rhamnolipid surfactants produced by the opportunistic pathogen Pseudomonas aeruginosa in the maintenance of biofilm architecture. Biofilms produced by mutants deficient in rhamnolipid synthesis do not maintain the noncolonized channels surrounding macrocolonies. We provide evidence that surfactants may be able to maintain open channels by affecting cell-cell interactions and the attachment of bacterial cells to surfaces. The induced synthesis of rhamnolipids during the later stages of biofilm development (when cell density is high) implies an active mechanism whereby the bacteria exploit intercellular interaction and communication to actively maintain these channels. We propose that the maintenance of biofilm architecture represents a previously unrecognized step in the development of these microbial communities.
منابع مشابه
The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation.
Pseudomonas aeruginosa PAO1 produces the biodetergent rhamnolipid and secretes it into the extracellular environment. The role of rhamnolipids in the life cycle and pathogenicity of P. aeruginosa has not been completely understood, but they are known to affect outer membrane composition, cell motility, and biofilm formation. This report is focused on the influence of the outer membrane-bound es...
متن کاملElastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation.
Elastase LasB, an important extracellular virulence factor, is shown to play an important role in the pathogenicity of Pseudomonas aeruginosa during host infection. However, the role of LasB in the life cycle of P. aeruginosa is not completely understood. This report focuses on the impact of LasB on biofilm formation of P. aeruginosa PAO1. Here, we reported that the lasB deletion mutant (ΔlasB)...
متن کاملPseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.
AlgR is a key Pseudomonas aeruginosa transcriptional response regulator required for virulence. AlgR activates alginate production and twitching motility but represses the Rhl quorum-sensing (QS) system, including rhamnolipid production. The role of AlgR phosphorylation is enigmatic, since phosphorylated AlgR (AlgR-P) is required for twitching motility through the fimU promoter but is not requi...
متن کاملPseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella.
Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased ...
متن کاملAlginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation.
Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 185 3 شماره
صفحات -
تاریخ انتشار 2003